Convex functions on the Heisenberg group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Functions on the Heisenberg Group

Convex functions in Euclidean space can be characterized as universal viscosity subsolutions of all homogeneous fully nonlinear second order elliptic partial differential equations. This is the starting point we have chosen for a theory of convex functions on the Heisenberg group.

متن کامل

On the Second Order Derivatives of Convex Functions on the Heisenberg Group

A classical result of Aleksandrov asserts that convex functions in Rn are twice differentiable a.e., and a rst step to prove it is to show that these functions have second order distributional derivatives which are measures, see [4, pp. 239-245]. On the Heisenberg group, and more generally in Carnot groups, several notions of convexity have been introduced and compared in [3] and [7], and Ambro...

متن کامل

Maximum and Comparison Principles for Convex Functions on the Heisenberg Group

The purpose in this paper is to establish pointwise estimates for a class of convex functions on the Heisenberg group. An integral estimate for classical convex functions in terms of the Monge–Ampère operator det D2u was proved by Aleksandrov, see [3, Theorem 1.4.2]. Such estimate is of great importance in the theory of weak solutions for the Monge–Ampère equation, and its proof revolves around...

متن کامل

The Fourier Transforms of Lipschitz Functions on the Heisenberg Group

We study the order of magnitude of the Fourier transforms of certain Lipschitz functions on the Heisenberg group Hn. We compare our conclusions with some previous results in the field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2003

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-003-0190-4